วันจันทร์ที่ 14 กุมภาพันธ์ พ.ศ. 2554

ระบบเครือข่ายและโทโปโลยี

โทโปโลยีคือ ?

โทโปโลยี

โทโปโลยีคือลักษณะทางกายภาพ (ภายนอก) ของระบบเครือข่าย ซึ่งหมายถึง ลักษณะของการเชื่อมโยงสายสื่อสารเข้ากับอุปกรณ์ อิเล็กทรอนิกส์และเครื่องคอมพิวเตอร์ ภายในเครือข่ายด้วยกันนั่นเอง โทโปโลยีของเครือข่าย LAN แต่ละแบบมีความเหมาะสมในการใช้งาน แตกต่างกันออกไป การนำไปใช้จึงมีความจำเป็นที่เราจะต้องทำการศึกษาลักษณะและคุณสมบัติ ข้อดีและข้อเสียของโทโปโลยีแต่ละแบบ เพื่อนำไปใช้ในการออกแบบพิจารณาเครือข่าย ให้เหมาะสมกับการใช้งาน รูปแบบของโทโปโลยี ของเครือข่ายหลัก ๆ มีดังต่อไปนี้


โทโปโลยีแบบบัส (Bus)

โทโปโลยีแบบบัสต่างกับโทโปโลยีแบบดาว ตรงที่แบบดาวเมื่อมีสถานีงานจำนวนมากเท่าใด จำนวนสายสัญญาณก็จะมากขึ้นเท่านั้น

ในระบบเครือข่าย LAN โทโปโลยีแบบ BUS นับว่าเป็นแบบโทโปโลยีที่ได้รับความนิยมใช้กันมากที่สุดมา ตั้งแต่อดีตจนถึงปัจจุบัน เหตุผลอย่างหนึ่งก็คือสามารถติดตั้งระบบ ดูแลรักษา และติดตั้งอุปกรณ์เพิ่มเติมได้ง่าย ไม่ต้องใช้เทคนิคที่ยุ่งยากซับซ้อน ลักษณะการทำงานของเครือข่ายโทโปโลยีแบบ BUS คืออุปกรณ์ทุกชิ้นหรือโหนดทุกโหนด ในเครือข่ายจะต้องเชื่อมโยงเข้ากับสายสื่อสารหลักที่เรียกว่า "บัส" (BUS)เมื่อโหนดหนึ่งต้องการจะส่งข้อมูลไปให้ยังอีกโหนด หนึ่งภายในเครือข่าย ข้อมูลจากโหนดผู้ส่งจะถูกส่งเข้าสู่สายบัสในรูปของแพ็กเกจ ซึ่งแต่ละแพ็กเกจจะประกอบด้วยตำแหน่งของผู้ส่งและผู้รับ และข้อมูล การสื่อสารภายในสายบัสจะเป็นแบบ 2 ทิศทางแยกไปยังปลายทั้ง 2 ด้านของบัส โดยตรงปลายทั้ง 2 ด้านของบัสจะมีเทอร์มิเนเตอร์ (Terminator) ทำหน้าที่ดูดกลืนสัญญาณ เพื่อป้องกันไม่ให้สัญญาณข้อมูลนั้นสะท้อนกลับ เข้ามายังบัสอีก เป็นการป้องกันการชนกันของสัญญาณข้อมูลอื่น ๆ ที่เดินทางอยู่บนบัส

สัญญาณข้อมูลจากโหนดผู้ส่งเมื่อเข้าสู่บัสจะไหลผ่านไปยังปลายทั้ง 2 ข้างของบัส แต่ละโหนดที่เชื่อมต่อเข้ากับ บัสจะคอยตรวจดูว่า ตำแหน่งปลายทางที่มากับแพ็กเกจข้อมูลนั้นตรงกับตำแหน่งของตนหรือไม่ ถ้าใช่ก็จะรับข้อมูลนั้นเข้ามาสู่โหนดตน แต่ถ้าไม่ใช่ก็จะปล่อยให้สัญญาณข้อมูลนั้นผ่านไป จะเห็นว่าทุก ๆ โหนดภายในเครือข่ายแบบ BUS นั้นสามารถรับรู้สัญญาณข้อมูลได้ แต่จะมีเพียงโหนด ปลายทางเพียงโหนดเดียวเท่านั้นที่จะรับข้อมูลนั้นไปได้ การควบคุมการสื่อสารภายในเครือข่ายแบบ BUS มี 2 แบบคือ

1. แบบควบคุมด้วยศูนย์กลาง (Centralized) ซึ่งจะมีโหนดหนึ่งที่ทำหน้าที่เป็นศูนย์กลางควบคุมการสื่อสารภายในเครือข่าย ซึ่งส่วนใหญ่จะเป็นไฟล์เซิร์ฟเวอร์

2. การควบคุมแบบกระจาย (Distributed) ทุก ๆ โหนดภายในเครือข่ายจะมีสิทธิในการควบคุมการสื่อสารแทนที่จะ เป็นศูนย์กลางควบคุมเพียงโหนดเดียว ซึ่งโดยทั่วไปคู่โหนดที่กำลังทำการส่ง-รับข้อมูลกันอยู่จะเป็นผู้ควบคุมการสื่อสารในเวลานั้น

ข้อเสีย อย่างหนึ่งของเครือข่ายแบบ BUS คือการไหลของข้อมูลที่เป็น 2 ทิศทางทำให้ระบุจุดที่เกิดความเสียหายในบัสยาก และโหนดที่ถัดต่อไปจากจุดที่เกิดความเสียหายจนถึงปลายของบัสจะไม่สามารถทำการสื่อสารข้อมูลได้ แต่โหนดที่อยู่ก่อนหน้าจุดเสียหายจะยังคงสื่อสารข้อมูลได้


 แบบบัส


โทโปโลยีรูปวงแหวน (Ring)

เป็นการสื่อสารที่ส่งผ่านไปในเครือข่าย ข้อมูลข่าวสารจะไหลวนอยู่ในเครือข่ายไปในทิศทางเดียวเหมือนวงแหวน หรือ RING นั่นเอง โดยไม่มีจุดปลายหรือเทอร์มิเนเตอร์เช่นเดียวกับเครือข่ายแบบ BUS ในแต่ละโหนดหรือสเตชั่นจะมีรีพีตเตอร์ประจำโหนด 1 เครื่อง ซึ่งจะทำหน้าที่เพิ่มเติมข่าวสารที่จำเป็นต่อการสื่อสาร ในส่วนหัวของแพ็กเกจ ข้อมูลสำหรับการส่งข้อมูลออกจากโหนด และมีหน้าที่รับแพ็กเกจข้อมูลที่ไหลผ่านมาจากสายสื่อสาร เพื่อตรวจสอบว่าเป็นข้อมูลที่ส่งมาให้โหนดตนหรือไม่ ถ้าใช่ก็จะคัดลอกข้อมูลทั้งหมดนั้นส่งต่อไปให้กับโหนดของตน แต่ถ้าไม่ใช่ก็จะปล่อยข้อมูลนั้นไปยังรีพีตเตอร์ของโหนดถัดไป


แบบวงแหวน


โทโปโลยีรูปดาว (Star)

เป็นหลักการส่งและรับข้อมูลเหมือนกับระบบโทรศัพท์ การควบคุมจะทำโดยสถานีศูนย์กลาง ทำหน้าที่เป็นตัวสวิตชิ่ง ข้อมูลทั้งหมดในระบบเครือข่ายจะต้องผ่านเครื่องคอมพิวเตอร์ศูนย์กลาง (Center Comtuper)

เป็นการเชื่อมโยงการติดต่อสื่อสารที่มีลักษณะคล้ายกับรูปดาว (STAR) หลายแฉก โดยมีศูนย์กลางของดาว หรือฮับเป็นจุดผ่านการติดต่อกันระหว่างทุกโหนดในเครือข่าย ศูนย์กลางจึงมีหน้าที่เป็นศูนย์ควบคุมเส้นทางการสื่อสาร ทั้งหมดภายใน นอกจากนี้ศูนย์กลางยังทำหน้าที่เป็นศูนย์กลางข้อมูลอีกด้วย การสื่อสารภายในเครือข่ายแบบ STAR จะเป็นแบบ 2 ทิศทางโดยจะอนุญาตให้มีเพียงโหนดเดียวเท่านั้นที่สามารถส่งข้อมูลเข้าสู่เครือข่ายได้ จึงไม่มีโอกาสที่หลาย ๆ โหนดจะส่งข้อมูลเข้าสู่เครือข่ายในเวลาเดียวกัน เพื่อป้องกันการชนกันของสัญญาณข้อมูล เครือข่ายแบบ STAR เป็นโทโปโลยีอีกแบบหนึ่งที่เป็นที่นิยมใช้กันในปัจจุบัน

ข้อดี ของเครือข่ายแบบ STAR คือการติดตั้งเครือข่ายและการดูแลรักษาทำ ได้ง่าย หากมีโหนดใดเกิดความเสียหายก็สามารถตรวจสอบได้ง่าย และศูนย์กลางสามารถตัดโหนดนั้นออกจากการสื่อสารในเครือข่ายได้

ข้อเสีย ของเครือข่ายแบบ STAR คือเครื่องคอมพิวเตอร์ที่ทำหน้าที่เป็นศูนย์กลางมีราคาแพง และถ้าศูนย์กลางเกิดความเสียหายจะทำให้ทั้งระบบทำงานไม่ได้เลย นอกจากนี้เครือข่ายแบบ STAR ยังใช้สายสื่อสารมากกว่าแบบ BUS และ แบบ RING


แบบดาว


โทโปโลยีแบบ Hybrid

เป็นรูปแบบใหม่ ที่เกิดจากการผสมผสานกันของโทโปโลยีแบบ STAR , BUS , RING เข้าด้วยกัน เพื่อเป็นการลดข้อเสียของรูปแบบที่กล่าวมา และเพิ่มข้อดี ขึ้นมา มักจะนำมาใช้กับระบบ WAN (Wide Area Network) มาก ซึ่งการเชื่อมต่อกันของแต่ละรูปแบบนั้น ต้องใช้ตัวเชื่อมสัญญาญเข้ามาเป็นตัวเชื่อม ตัวนั้นก็คือ Router เป็นตัวเชื่อมการติดต่อกัน


แบบผสม


โทโปโลยีแบบ MESH

เป็นรูปแบบที่ถือว่า สามารถป้องกันการผิดพลาดที่อาจจะเกิดขึ้นกับระบบได้ดีที่สุด เป็นรูปแบบที่ใช้วิธีการเดินสายของแต่เครื่อง ไปเชื่อมการติดต่อกับทุกเครื่องในระบบเครือข่าย คือเครื่องทุกเครื่องในระบบเครือข่ายนี้ ต้องมีสายไปเชื่อมกับทุก ๆ เครื่อง ระบบนี้ยากต่อการเดินสายและมีราคาแพง จึงมีค่อยมีผู้นิยมมากนัก
 

โทโปโลยีแบบ MESH

โปรโตคอล

โปรโตคอลคืออะไร

ในการสื่อสารทางเครือข่ายคอมพิวเตอร์ จำต้องมีการสื่อสารข้อมูลระหว่างเครื่องคอมพิวเตอร์ในระบบ ซึ่งเครื่องคอมพิวเตอร์ที่ต่ออยู่ในเครือข่ายเดียวกันนี้ อาจจะมีฮาร์ดแวร์,ซอฟท์แวร์ที่แตกต่างกัน ดังนั้นเมื่อทำการส่งข้อมูลถึงกันและตีความหมายได้ตรงกัน จึงต้องมีการกำหนดระเบียบวิธีการติดต่อให้ตรงกัน โปรโตคอล ( Protocol ) คือระเบียบวิธีที่กำหนดขึ้นสำหรับการสื่อสารข้อมูล โดยสามารถส่งผ่านข้อมูลไปยังปลายทางได้อย่างถูกต้อง ซึ่งตัวโปรโตคอลที่นิยมใช้ในปัจจุบันคือ TCP/IP นอกจากนี้ยังมีการออกแบบโปรโตคอลตัวอื่นๆขึ้นมาใช้งานอีก เช่น โปรโตคอล IPX/SPX,โปรโตคอล NetBEUI และ โปรโตคอล Apple Talk

โปรโตคอล IPX/SPX
ถูกพัฒนาขึ้นโดยบริษัท Novell ซึ่งทำการพัฒนามาจากตัวโปรโตคอล XNS ของบริษัท Xerox Corporation ซึ่งโครงสร้างเมื่อทำการเปรียบเทียบ
กับ OSI Model ดังรูป




ตัวโปรโตคอล IPX/SPXแบ่งออกเป็น 2 โปรโตคอลหลักคือ Internetwork Packet Exchange   ( IPX) และ Sequenced Packet Exchange (SPX) โดยโปรโตคอล IPX ทำหน้าที่ในระดับ network layer ตามาตรฐาน OSI Model มีกลไกการส่งผ่านข้อมูลแบบ connectionless,unrerelibleหมายความว่า เมื่อมีการส่งข้อมูล โดยไม่ต้องทำการสถาปนาการเชื่อมต่อกันระหว่าง host กับเครื่องที่ติดต่อกันอย่างถาวร ( host , เครื่องเซิร์ฟเวอร์ที่ให้บริการใดๆในเครือข่าย ) และไม่ต้องการรอสัญญานยืนยันการรับข้อมูลจากปลายทาง โดยตัวโปรโตคอลจะพยายามส่งข้อมูลนั้นไปยังปลายทางให้ดีที่สุด สำหรับโปรโตคอล SPX ทำหน้าที่ในระดับ transport layer ตามมาตรฐาน OSI Model โดยส่งผ่านข้อมูลตรงข้ามกับโปรโตคอล IPXคือ ต้องมีการทำการสถาปนาการเชื่อมโยงกันก่อนและมีการส่งผ่านข้อมูลที่เชื่อถือได้ ด้วยการตรวจสอบสัญญาณยืนยันการรับส่งข้อมูลจากปลายทาง


โปรโตคอล NetBEUI

โปรโตคอล NetBEUI หรือ NetBIOS Enhanced User Interface นั้น เป็นโปรโตคอลที่ไม่มี ส่วนในการระบุเส้นทางส่งผ่านข้อมูล (Non-routable Protocol)โดยจะใช้วิธีการ Broadcast ข้อมูลออกไปในเครือข่าย และหากใครเป็นผู้รับที่ถูกต้องก็จะนำข้อมูลที่ได้รับไปประมวลผล ข้อจำกัดของโปรโตคอลประเภทนี้ก็คือไม่สามารถทำการ Broadcast ข้อมูลข้ามไปยัง Physical Segment อื่นๆที่ไม่ใช่ Segment เดียวกันได้ เป็นการแบ่งส่วนของเครือข่ายออกจากกันทางกายภาพ หากต้องการเชื่อมต่อเครือข่ายถึงกันจะต้องใช้อุปกรณ์อย่างเช่น Router มาทำหน้าที่เป็นตัวกลางระหว่างเครือข่าย
เนื่องมาจากอุปกรณ์บางอย่างเช่น Router ไม่สามารถจะ Broadcast ข้อมูลต่อไปยังเครือข่ายอื่นๆได้ เพราะถ้าหากยอมให้ทำเช่นนั้นได้ จะทำให้การสื่อสารระหว่างเครือข่ายคับคั่งไปด้วยข้อมูลที่เกิดจากการ Broadcast จนเครือข่ายต่างๆไม่สามารถที่จะสื่อสารกันต่อไปได้ โปรโตคอล NetBEUI จึงเหมาะที่จะใช้งานบนเครือข่ายขนาดเล็กที่มีจำนวนเครื่องคอมพิวเตอร์ไม่เกิน 50 เครื่องเท่านั้น NetBEUI เป็นหนึ่งในสองทางเลือกสำหรับผู้ใช้งาน NetBIOS ( Network Basic Input Output System ) ซึ่งสามารถทำงานได้ทั้งบนโปรโตคอล TCP/IP และ NetBUEI


โปรโตคอล AppleTalk

จุดเริ่มต้นของโปรโตคอล AppleTalk เกิดขึ้นในปีค.ศ.1983 ซึ่งเป็นช่วงที่บริษัท Apple Computer ต้องการออกแบบชุดโปรโตคอลสื่อสารข้อมูลของตนเองขึ้น เพื่อใช้เชื่อมโยงเครือข่ายของเครื่องแบบแมคอินทอช และสามารแชร์กับอุปกรณ์ต่างๆ นอกจากนี้ยังขยายไปสู่การเชื่อมโยงเป็นเครือข่ายของเซิร์ฟเวอร์,เครื่องพิมพ์, Gateway และ Router ของผู้ผลิตรายอื่นๆด้วยต่อจากนั้นเครื่องแมคอินทอชและอุปกรณ์ต่างๆที่บริษัทผลิตออกมาก็ได้มีการเพิ่มส่วนของฮาร์ดแวร์และซอฟท์แวร์ให้สามารถรองรับโปรโตคอลตัวนี้ได้ รวมถึงระบบปฏิบัติการ MacOS รุ่นใหม่ๆก็ได้มีการผนวกฟังก์ชั่นให้รองรับโปรโตคอลตัวนี้ได้เช่นกัน ทำให้กลุ่มผู้ใช้เครื่องแมคอินทอชสามารถเชื่อมโยงกันเป็นเครือข่ายได้ง่ายโดยไม่ต้องไปหาซื้อ อุปกรณ์เพิ่มเติมอีก

โปรโตคอล Apple Talk ถูกออกแบบมาให้ทำงานเป็นเครือข่ายในแบบ peer-to-peer ซึ่งถือว่าเครื่องทั้งหมดที่เชื่อมต่ออยู่ในเครือข่ายสามารถเป็นเซิร์ฟเวอร์ได้ทุกเครื่องโดยไมต้องจัดให้บางเครื่องทำหน้าที่เป็นเซิร์ฟเวอร์ที่ให้บริการโดยเฉพาะขึ้นมา ต่อมาปีค.ศ. 1989 ได้มีการพัฒนาโปรโตคอล AppleTalk ให้สนับสนุนเครือข่ายที่ใหญ่มากขึ้นได้ สามารถมีเครื่องลูกข่ายและอุปกรณ์ที่เชื่อมต่อในเครือข่ายได้มากกว่าเดิมเรียกว่าเป็นโปรโตคอล Apple Talk Phase 2 นอกจากนี้ยังเพิ่มโปรโตคอลที่ทำให้สามารถเชื่อมต่อกับเครือข่ายแบบ Ethernet และ Token Ring ได้ โดยเรียกว่า EtherTalk และ TokenTalk ตามลำดับ


โปรโตคอลTCP/IP ( RFC1180 )

โปรโตคอล TCP/IP เป็นชื่อเรียกของชุดโปรโตคอลที่สำคัญ มีการใช้งานกันอย่างแพร่หลายตามการขยายตัวของอินเทอร์เนท/อินทราเนท ความจริงแล้วโปรโตคอล TCP/IP เป็นกลุ่มของโปรโตคอล หลายตัวที่ประกอบกันเป็นชุดให้ใช้งานโดยมีคำเต็มว่าTransmission Control Protocol /Internet Protocol ซึ่งจะเห็นได้ว่ามีโปรโตคอลประกอบกันทำงาน 2 ตัว คือ TCP และ IP
ตัวอย่างของกลุ่มโปรโตคอลในชุดของ TCP/IP ที่เราพบและใช้งานบ่อยๆ ( ส่วนใหญ่จะไม่ได้ใช้งานโดยตรง แต่จะใช้งานผ่านแอพพลิเคชั่นต่างๆหรือทำงานโดยอ้อม เช่น Internet Protocol,Address Resolution Protocol(ARP) ,Internet Control Message Protocol (ICMP) ,User Datagram Protocol (UDP) ,Transprot Control Protocol (TCP) และ Simple Mail Transfer Protocol (SMTP)

โปรโตคอลที่มีบทบาทสำคัญในการทำงานในเครือข่ายอินเทอร์เนทคือ Internet Protocol (โปรโตคอล IP) เนื่องจากเมื่อโปรโตคอลอื่นๆต้องการส่งผ่านข้อมูลข้ามเครือข่ายในอินเทอร์เนทนั้น จะต้องอาศัยการผนึกข้อมูล ไปกับโปรโตคอล IP ที่มีกลไกการระบุเส้นทาง ผ่าน Gateway หรือ

Router เพื่อนำข้อมูลไปยังเครือข่ายและเครื่องปลายทางที่ถูกต้อง เนื่องจากกลไกการระบุเส้นทางจะทำงานที่โปรโตคอล IP เท่านั้นและด้วยเหตุนี้เราจึงเรียก ว่าเป็นโปรโตคอลที่มีความสามารถในการระบุเส้นทางการส่งผ่านของข้อมูลได้(Routable)

การที่เครื่องคอมพิวเตอร์จะสามารถสื่อสารกันได้จำต้องมีการระบุแอดเดรสที่ไม่ซ้ำกัน เพราะไม่เช่นนั้นข้อมูลที่ส่งอาจจะไม่ถึงปลายทางได้ ซึ่งแอดเดรสจะมีข้อกำหนดมาตรฐาน ซึ่งในการใช้งานโปรโตคอล TCP/IP ที่เชื่อมโยงเครือข่ายนี้ จะเรียกว่า IP Address ( Internet Protocol Address )

OSI Model

OSI Model 
      
       OSI Model เป็น medel มาตรฐานในการสื่อสารซึ่งมีวัตถุประสงค์ ใช้สำหรับการสื่อสารระหว่างระบบ 2 ระบบ ระบบจะเปิดการติดต่อสื่อสารในเค้าโครงสำหรับออกแบบ
ระบบเครื่อข่าย จะอนุญาตให้สื่อสารข้ามทุกรูปแบบของระบบคอมพิวเตอร์แยกเป็น 7 ชั้นแต่เกี่ยวเนื่องกันและเป็นรูปแบบมาตรฐาน ISO


OSI Model ประกอบด้วย 7 Layer

  1. Physical Layer                              
  2. Data link Layer
  3. Network Layer
  4. Transport Layer
  5. Sesion Layer
  6. Presentation Layer
  7. Application Layer



OSI layers
  
 
The OSI Environment
  
 


ทั้ง 7 สามารถแบ่งออกได้ 3 กลุ่มย่อย
          กลุ่มที่ 1 Network support layer ได้แก่ Layer 1, 2, 3
          กลุ่มที่ 2 Link ระหว่าง Network support layer กับ user support layer ได้แก่ layer 4
          กลุ่มที่ 3 User support layer ได้แก่ layer 5, 6, 7
 
 
Functions of The Layers

 Physical Layer

Physical ติดต่อระหว่างผู้รับ
  • การส่งต่อข้อมูล
  • สื่อกลาง & สัญญาณ
  • เครื่องมือการติดต่อ




 Data link layer
 

  • ควบคุมการส่งข้อมูลบน Physical link
  • ดูที่อยู่บนเครือข่าย Physical
  • Framing
  • ควบคุมให้เท่ากัน
  • ควบคุมการผิดพลาด (Error)
  • Synchronization ให้ผู้ส่งกับผู้รับใช้เวลาเดียวกันในส่งข้อมูล
  • ควบคุมการใช้สายสื่อสาร


 
  
 Network layer

  • รับผิดชอบในการหาเส้นทางให้ส่งข้อมูลจากต้นทางไปปลายทาง
  • Switching & Routing
  • หาที่อยู่อย่างมีเหตุผล
  • ไม่ต้องใช้ Technology ชั้นสูง
  • ไม่ต้องใช้สายโดยตรง
  • Network Layer Example






 Transport layer
 
  • ควบคุมการส่งข้อมูลจาก ต้นทางไปยังปลายทางข้อมูลใน Layer นี้เรียกว่า " package "
  • เหมือนกัน ใช้ port address
  • Segmentation & Reassembly
  • ส่งไปเป็นลำดับ Segment Number
  • ควบคุมการติดต่อ
  • Flow Control
  • Eroor Control
  • คุณภาพการบริการ (QoS) 
ตัวอย่าง Transport Layer
 

 
  
 Session layer
  • ทำงานเกี่ยวกับการควบคุม dialog เช่น การเชื่อมต่อ บำรุงรักษา และ ปรับการรับ และส่งข้อมูลให้มีค่าตรงกัน
  • ทำหน้าที่เกี่ยวกับการกำหนด Synchronizationเปิดและปิดการสนทนา ควบคุมดูแลระหว่างการสนทนา
  • Grouping คือ ข้อมูลประเภทเดียวกันจะจับกลุ่มไว้ใน Group เดียวกัน
  • Recovery คือ การกู้กลับข้อมูล
 
 
 Presentation layer

  • เป็นเรื่องเกี่ยวกับการสร้างและการเปลี่ยนแปลงข้อมูลระหว่าง 2 ระบบ
  • Data Fromats และ Encoding
  • การบีบอัดข้อมูล (Data Compression)
  • Encryption - การเข้ารหัส Compression - การบีบ และอัดข้อมูล
  • Security - ควบคุมการ log in ด้วย Code, password

  
 

 Application layer    

  • เป็นเรื่องเกี่ยวกับการเข้าไปช่วยในการบริการ เช่น e-mail , ควบคุมการส่งข้อมูล , การแบ่งข้อมูล
  • เป็นต้นยอมให้ user, software ใช้ข้อมูลส่วนนี้เตรียม user interface และ Support service ต่าง ๆ
  • เช่น E-mail
  • ทำ Network virtual Terminal ยอมให้ User ใช้งานระยะไกลได้
  • File transfer , access และ Management (FTAM)
  • Mail services
  • Directory service คือการให้บริการด้าน Data Base
 

วันจันทร์ที่ 10 มกราคม พ.ศ. 2554

อุปกรณ์การสื่อสารข้อมูล

อุปกรณ์ที่ใช้การสื่อสารข้อมูลคอมพิวเตอร์
 ฮับ หรือ รีพีทเตอร์ (Hub, Repeater) 
     เป็นอุปกรณ์ที่ทวน และขยายสัญญาณ เพื่อส่งต่อไปยังอุปกรณ์อื่น ให้ได้ระยะทางที่ยาวไกลขึ้น ไม่มีการเปลี่ยนแปลงข้อมูลก่อนและหลัง การรับ-ส่ง และไม่มีการใช้ซอฟท์แวร์ใดๆ มาเกี่ยวข้องกับอุปกรณ์ชนิดนี้ การติดตั้งจึงทำได้ง่าย ข้อเสียคือความเร็วในการส่งข้อมูล จะเฉลี่ยลดลงเท่ากันทุกเครื่อง เมื่อมีคอมพิวเตอร์มาเชื่อมต่อมากขึ้น
โมเด็ม (MODEM)MODEM มาจากคำเต็มว่า Modulator – DEModulator ทำหน้าที่แปลงสัญญาณข้อมูลดิจิตอล ที่ได้รับจากเครื่องส่งหรือคอมพิวเตอร์ เป็นสัญญาณแบบอนาลอกก่อนทำการส่งไปยังปลายทางต่อไป โดยผ่านเครือข่ายโทรศัพท์ และเมื่อส่งถึงปลายทางก็จะมีโมเด็มทำหน้าที่แปลงสัญญาณจากอนาลอกให้เป็นดิจิตอล เพื่อใช้กับคอมพิวเตอร์ปลายทาง
มัลติเพล็กซ์เซอร์ (Multiplexer)
วิธีการเชื่อมต่อการสื่อสารระหว่างผู้รับและผู้ส่งปลายทางที่ง่ายที่สุดคือ การเชื่อมต่อแบบจุดต่อจุด (Point to Point) แต่ต้องเสียค่าใช้จ่ายสูงและใช้งานไม่เต็มที่ จึงมีวิธีการเชื่อมต่อที่ยุ่งยากขึ้น คือการเชื่อมต่อแบบหลายจุดซึ่งใช้สายสื่อสารเพียงเส้น 802.3
คอนเซนเตรเตอร์ (Concentrator)
คอนเซนเตรเตอร์เป็นมัลติเพล็กซ์เซอร์ที่มีประสิทธิภาพสูง สามารถเพิ่มสายหรือช่องทางการส่งข้อมูลได้มากขึ้น การส่งข้อมูลจะเป็นแบบอซิงโครนัส
คอนโทรลเลอร์(Controller)
คอนโทรลเลอร์เป็นมัลติเพล็กซ์เซอร์ที่ส่งข้อมูลแบบอซิงโครนัส ที่สามารถส่งข้อมูลด้วยความเร็วสูงได้ดี การทำงานจะต้องมีโปรโตคอลพิเศษสำหรับกำหนดวิธีการรับส่งข้อมูล มีบอร์ดวงจรไฟฟ้าและซอฟต์แวร์สำหรับคอมพิวเตอร์
ฟรอนต์ – เอ็นโปรเซสเซอร์ FEP (Front-End Processor)
FEP เป็นคอมพิวเตอร์ที่ใช้เชื่อมต่อระหว่างโฮสต์คอมพิวเตอร์ หรือมินิคอมพิวเตอร์กับอุปกรณ์เครือข่ายสำหรับสื่อสารข้อมูล เช่น โมเด็ม มัลติเล็กซ์เซอร์ เป็นต้น FEP เป็นอุปกรณ์ทีมีหน่วยความจำ (RAM) และซอฟต์แวร์สำหรับควบคุมการทำงานเป็นของตัวเองโดยมีหน้าที่หลักคือ ทำหน้าที่แก้ไขข่าวสาร เก็บข่าวสาร เปลี่ยนรหัสรวบรวมหรือกระจายอักขระ ควบคุมอัตราความเร็วในการรับส่งข้อมูล จัดคิวเข้าออกของข้อมูล ตรวจสอบข้อผิดพลาดในการส่งข้อมูล

อิมูเลเตอร์ (Emulator)
อิมูเลเตอร์เป็นอุปกรณ์ที่ทำหน้าที่เปลี่ยนกลุ่มข่าวสารจากโปรโตคอลแบบหนึ่งไปเป็นกลุ่มข่าวสาร ซึ่งใช้โปรโตคอลอีกแบบหนึ่ง แต่จะเป็นอุปกรณ์ฮาร์ดแวร์หรือเป็นโปรแกรมซอฟต์แวร์ก็ได้ บางครั้งอาจจะเป็นทั้ง 2 อย่าง โดยทำให้คอมพิวเตอร์ที่ต่อเข้ามานั้นดูเหมือนเป็นเครื่องเทอร์มินัลหนึ่งเครื่อง โฮสต์หรือมินิคอมพิวเตอร์ในปัจจุบันนิยมนำเครื่อง PC มาใช้เป็นเทอร์มินัลของเครื่องเมนเฟรมคอมพิวเตอร์ ทั้งนี้เพราะประหยัดกว่าและเมื่อไรที่ไม่ใช้ติดต่อกับมินิหรือเมนแฟรมก็สามารถใช้เป็น PC ทั่วไปได้
เกตเวย์ (Gateway)
เกตเวย์เป็นอุปกรณ์อิเล็กทรอนิกส์ที่มีหน้าที่หลักคือ ทำให้เครือข่ายคอมพิวเตอร์ 2 เครือข่ายหรือมากกว่าซึ่งมีลักษณะแตกต่างกัน สามารถสื่อสารกันได้เสมือนกับเป็นเครือข่ายเดียวกัน โดยทั่วไปแล้วระบบเครือข่ายแต่ละเครือข่ายอาจจะแตกต่างกันในหลายกรณี เช่น ลักษณะการเชื่อมต่อ (Connectivity) ที่ไม่เหมือนกัน โปรโตคอลที่ใช้สำหรับรับส่งข้อมูลต่างกัน เป็นต้น
บริดจ์ (Bridge)
เป็นอุปกรณ์ IWU (Inter Working Unit) ที่ใช้สำหรับเชื่อมเครือข่ายท้องถิ่น (Local Area Network หรือ LAN) 2 เครือข่ายเข้าด้วยกัน ซึ่งอาจจะใช้โปรโตคอลที่เหมือนกันหรือต่างกันก็ได้
เราเตอร์ (Router)เป็นอุปกรณ์ที่ใช้เชื่อมต่อเครือข่ายเข้าด้วยกัน ซึ่งอาจจะเป็นเครือข่ายเดียวกันหรือข้ามเครือข่ายกัน โดยการเชื่อมกันระหว่างหลายเครือข่ายแบบนี้เรียกว่า เครือข่ายอินเตอร์เน็ต (Internet) โดยเครือข่ายแต่ละเครือข่ายจะเรียกว่า เครือข่ายย่อย (Subnetwork) ส่วนอุปกรณ์ที่ใช้เชื่ออมต่อระหว่างเครือข่าย เรียกว่า IWU (Inter Working Unit) ได้แก่ เราเตอร์และบริดจ์

สื่อกลางที่ใช้ในการสื่อสารข้อมูล

สื่อกลางที่ใช้ในการสื่อสารข้อมูล

องค์ประกอบที่สำคัญที่ใช้ในการสื่อสารข้อมูลอันหนึ่งที่ขาดไม่ได้ คือสายสื่อกลาง ซึ่งแบ่งเป็น 2 ประเภทใหญ่ คือ สื่อกลางที่กำหนดเส้นทางได้ เช่น สายโคแอกเซียล (Coaxial) สายเกลียวคู่ (Twisted-pair) สายไฟเบอร์ออฟติก (Fiber Optic) และสื่อกลางที่กำหนดเส้นทางไม่ได้ เช่น คลื่นวิทยุ คลื่นดาวเทียม คลื่นไมโครเวฟ เป็นต้น
การเลือกสื่อกลางที่จะนำมาใช้ในการเชื่อมต่อระบบสื่อสารข้อมูลนั้น จำเป็นต้องพิจารณากันหลายประการ เช่น ความเร็วในการส่งข้อมูล ราคาของอุปกรณ์ที่ใช้ สถานที่ใช้ การบริการ การควบคุม ตลอดจนเทคโนโลยีที่จะนำมาใช้ ซึ่งลื่อกลางแต่ละชนิดจะมีคุณสมบัติแตกต่างกันไป



สายโคแอกเซียล (Coaxial Cable)
สายโคแอกเซียลเป็นสายที่นิยมใช้กันคอ่นข้างมากในระบบการสื่อสารความถี่สูง เช่น สายอากาศของทีวี สายชนิดนี้ถูกออกแบบมาให้มีค่าความต้านทาน 75 โอห์มและ 50 โอห์ม โดยสาย 75 โอห์ม ส่วนใหญ่ใช้กับสายอากาศทีวีและสาย 50 โอห์ม จะนำมาใช้กับการสื่อสารที่เป็นระบบดิจิตอล
คุณสมบัติของสายโคแอกเซียลประกอบด้วยตัวนำสองสาย โดยมีสายหนึ่งเป็นแกนอยู่ตรงกลางและอีกเส้นเป็นตัวนำล้อมรอบอยู่อีกชั้น มีขนาดของสาย 0.4 ถึง 1 นิ้ว
สายโคแอกเซียลมี 2 แบบ คือ แบบหนา (Thick) และแบบบาง (Thin) แบบหนาจะแข็ง การเดินสายทำได้ค่อนข้างยาก แต่สามารถส่งสัญญาณได้ไกลกว่าแบบบาง


สายคู่บิดเกลียว (Twisted-Pair)
สายคู่เกลียวเป็นสายมาตรฐานสองเส้นหุ้มด้วยฉนวนแล้วบิดเป็นเกลียว สามารถรับส่งข้อมูลได้ทั้งแบบ อนาลอกและแบบดิจิตอล สายชนิดนี้จะมีขนาด 0.015-0.056 นิ้ว ส่งข้อมูลได้ด้วยความเร็ว 10 เมกะบิทต่อวินาที ถ้าใช้ส่งสัญญาณแบบอนาลอกจะต้องใช้วงจรขยายหรือแอมพลิฟายเออร์ ทุก ๆ ระยะ 5-6 กม. แต่ถ้าต้องการส่งสัญญาณแบบดิจิตอลจะต้องใช้อุปกรณ์ทำซ้ำสัญญาณ (Repeater) ทุก ๆ ระยะ 2-3 กม. โดยทั่วไปแล้วสำหรับการส่งข้อมูลแบบดิจิตอล สัญญาณที่ส่งเป็นลักษณะคลื่นสี่เหลี่ยม สายคู่บิดเกลียวสามารถใช้ส่งข้อมูลได้หลายเมกะบิตต่อวินาทีในระยะทางได้ไกลหลายกิโลเมตร เนื่องจากสายคู่เกลียว มีราคาไม่แพงมาก ใช้ส่งข้อมูลได้ดี และมีน้ำหนักเบา นอกจากนั้นยังง่ายต่อการติดตั้ง จึงถูกใช้งานอย่างกว้างขวางตัวอย่างของสายคู่บิดเกลียว คือ สายโทรศัพท์
สำหรับสายคู่บิดเกลียวนั้นจะมีอยู่ 2 ชนิดคือ

1. สายคู่บิดเกลียวชนิดหุ้มฉนวน (Shielded Twisted Pair : STP) เป็นสายคู่บิดเกลียวที่หุ้มด้วยฉนวนชั้นนอกที่หนาอีกชั้นหนึ่ง เพื่อป้องกันการรบกวนของคลื่นแม่เหล็กไฟฟ้าดังรูป

2. สายคู่บิดเกลียวชนิดไม่หุ้มฉนวน (Unshielded Twisted Pair : UTP) เป็นสายคู่บิดเกลียวที่หุ้มด้วยฉนวนชั้นนอกที่บางทำให้สะดวกในการโค้งงอ แต่จะป้องกันการรบกวนของคลื่นแม่เหล็กไฟฟ้าได้น้อยกว่าชนิดแรก ดังรูป

ใยแก้วนำแสง (Fiber Optic)
เป็นการส่งสัญญาณด้วยใยแก้ว และส่งสัญญาณด้วยแสงมีความเร็วในการส่งข้อมูลสูงสามารถส่งข้อมูลได้ด้วยเร็วเท่ากับแสง ไม่มีสัญญาณรบกวนจากภายนอก
สายส่งข้อมูลแบบไฟเบอร์ออฟติกจะประกอบด้วยเส้นใยแก้ว 2 ชนิด ชนิดหนึ่งอยู่ตรงแกนกลาง อีกชนิดหนึ่งอยู่ด้านนอก โดยที่ใยแก้วทั้ง 2 นี้จะมีดัชนีในการสะท้อนแสงต่างกัน ทำให้แสงที่ส่งจากปลายด้านหนึ่งผ่านไปยังอีกด้านหนึ่งได้




สื่อกลางประเภทไม่มีสาย

ระบบไมโครเวฟ  (Microwave System)
               การส่งสัญญาณข้อมูลไปกลับคลื่นไมโครเวฟเป็นการส่งสัญญาณข้อมูลแบบรับช่วงต่อๆ กันจากหอ (สถานี)  ส่ง-รับสัญญาณหนึ่งไปยังอีกหอหนึ่ง  แต่ละหาจะครอบคลุมพื้นที่รับสัญญาณประมาณ 30-50  กม.  ระยะห่างของแต่ละหอคำนวณง่าย ๆ ได้จาก
สูตร
                  d  = 7.14 (1.33h)1/2 กม.
         เมื่อ     d = ระยะห่างระหว่างหอ  h = ความสูงของหอ  


         การส่งสัญญาณข้อมูลไมโครเวฟมักใช้กันในกรณีที่การติดตั้งสายเคเบิลทำได้ไม่สะดวก เช่น ในเขตเมืองใหญ่ ๆ หรือในเขตที่ป่าเขา  แต่ละสถานีไมโครเวฟจะติดตั้งจานส่ง-รับสัญญาณข้อมูล  ซึ่งมีเส้นผ่าศูนย์กลางประมาณ  10 ฟุต  สัญญาณไมโครเวฟเป็นคลื่นย่านความถี่สูง 
(2-10 จิกะเฮิรตซ์)  เพื่อป้องกันการแทรกหรือรบกวนจากสัญญาณอื่น ๆ  แต่สัญญาณอาจจะอ่อนลง  หรือหักเหได้ในที่มีอากาศร้อนจัด  พายุหรือฝน  ดังนั้นการติดตั้งจาน ส่ง-รับสัญญาณจึงต้องให้หันหน้าของจานตรงกัน  และหอยิ่งสูงยิ่งส่งสัญญาณได้ไกล
          ปัจจุบันมีการใช้การส่งสัญญาณข้อมูลทางไมโครเวฟกันอย่างแพร่หลาย  สำหรับการสื่อสารข้อมูลในระยะทางไกล ๆ หรือระหว่างอาคาร  โดยเฉพาะในกรณีที่ไม่สะดวกที่จะใช้สายไฟเบอร์ออปติก  หรือการสื่อสารดาวเทียม  อีกทั้งไมโครเวฟยังมีราคาถูกกว่า  และติดตั้งได้ง่ายกว่า  และสามารถส่งข้อมูลได้คราวละมาก ๆ ด้วย  อย่างไรก็ตามปัจจัยสำคัญที่ทำให้สื่อกลางไมโครเวฟเป็นที่นิยม  คือราคาที่ถูกกว่า

 การสื่อสารด้วยดาวเทียม  (Satellite Transmission)
             ที่จริงดาวเทียมก็คือสถานีไมโครเวฟลอยฟ้านั่นเอง  ซึ่งทำหน้าที่ขยายและทบทวนสัญญาณข้อมูล  รับและส่งสัญญาณข้อมูลกับสถานีดาวเทียม ที่อยู่บนพื้นโลก  สถานีดาวเทียมภาคพื้นจะทำการส่งสัญญาณข้อมูล ไปยังดาวเทียมซึ่งจะหมุนไปตามการหมุนของโลกซึ่งมีตำแหน่งคงที่เมื่อเทียมกับ ตำแหน่งบนพื้นโลก  ดาวเทียมจะถูกส่งขึ้นไปให้ลอยอยู่สูงจากพื้นโลกประมาณ  23,300  กม.  เครื่องทบทวนสัญญาณของดาวเทียม (Transponder)  จะรับสัญญาณข้อมูลจากสถานีภาคพื้นซึ่งมีกำลังอ่อนลงมากแล้วมาขยาย   จากนั้นจะทำการทบทวนสัญญาณ และตรวจสอบตำแหน่งของสถานีปลายทาง  แล้วจึงส่งสัญญาณข้อมูลไปด้วยความถี่ในอีกความถี่หนึ่งลงไปยังสถานีปลายทาง  การส่งสัญญาณข้อมูลขึ้นไปยังดาวเทียมเรียกว่า  "สัญญาณอัปลิงก์" (Up-link) และการส่งสัญญาณข้อมูลกลับลงมายังพื้นโลกเรียกว่า "สัญญาณ ดาวน์-ลิงก์ (Down-link)
              ลักษณะของการรับส่งสัญญาณข้อมูลอาจจะเป็นแบบจุดต่อจุด (Point-to-Point)  หรือแบบแพร่สัญญาณ (Broadcast)  สถานีดาวเทียม  1 ดวง สามารถมีเครื่องทบทวนสัญญาณดาวเทียมได้ถึง  25 เครื่อง   และสามารถครอบคลุมพื้นที่การส่งสัญญาณได้ถึง  1 ใน 3  ของพื้นผิวโลก  ดังนั้นถ้าจะส่งสัญญาณข้อมูลให้ได้รอบโลกสามารถทำได้โดยการส่งสัญญาณผ่านสถานีดาวเทียมเพียง  3  ดวงเท่านั้น
 


            ระหว่างสถานีดาวเทียม  2  ดวง  ที่ใช้ความถี่ของสัญญาณเท่ากันถ้าอยู่ใกล้กันเกินไปอาจจะทำให้เกิดการรบกวนสัญญาณ ซึ่งกันและกันได้  เพื่อหลีกเลี่ยงการรบกวน  หรือชนกันของสัญญาณดาวเทียม จึงได้มีการกำหนดมาตรฐานระยะห่างของสถานีดาวเทียม และย่านความถี่ของสัญญาณดังนี้
ระยะห่างกัน  4 องศา  (วัดมุมเทียงกับจุดศูนย์กลางของโลก)  ให้ใช้ย่านความถี่ของสัญญาณ  4/6 จิกะเฮิรตซ์  หรือย่าน C แบนด์โดยมีแบนด์วิดท์ของสัญญาณอัป-ลิงก์เท่ากับ  5.925-6.425 จิกะเฮิรตซ์  และมีแบนด์วิดท์ของสัญญาณดาวน์-ลิงก์เท่ากับ  3.7-4.2 จิกะเฮิรตซ์ ระยะห่างกัน  3 องศา  ให้ใช้ย่านความถี่ของสัญญาณ  12/14  จิกะเฮิรตซ์  หรือย่าน KU แบนด์  โดยมีแบนด์วิดท์ของสัญญาณอัป-ลิงก์เท่ากับ  14.0-14.5  จิกะเฮิรตซ์  และมีแบนด์วิดท์ของสัญญาณดาวน์-ลิงก์เท่ากับ  11.7-12.2 จิกะเฮิรตซ์ 
             นอกจากนี้สภาพอากาศ เช่น ฝนหรือพายุ  ก็สามารถทำให้สัญญาณผิดเพี้ยนไปได้เช่นกัน
             สำหรับการส่งสัญญาณข้อมูลนั้นในแต่ละเครื่องทบทวนสัญญาณจะมีแบนด์วิดท์เท่ากับ  36  เมกะเฮิรตซ์  และมีอัตราเร็วการส่งข้อมูลสูงสุดเท่ากับ  50 เมกะบิตต่อวินาที
             ข้อเสีย ของการส่งสัญญาณข้อมูลทางดาวเทียมคือ  สัญญาณข้อมูลสามารถถูกรบกวนจากสัญญาณภาคพื้นอื่น ๆ ได้  อีกทั้งยังมีเวลาประวิง (Delay Time)  ในการส่งสัญญาณเนื่องจากระยะทางขึ้น-ลง ของสัญญาณ  และที่สำคัญคือ มีราคาสูงในการลงทุนทำให้ค่าบริการสูงตามขึ้นมาเช่นกัน


แสงอินฟาเรด
เป็นการสื่อสารข้อมูลโดยใช้แสงอินฟาเรดเป็นสื่อกลาง

สัญญาณวิทยุ
เป็นสื่อนำข้อมูลแบบไร้สายที่มีการส่งสัญาณแบบคลื่นวิทยุไปในอากาศไปยังตัวรับสัญญาณ

วันจันทร์ที่ 6 ธันวาคม พ.ศ. 2553

สรุปงานวิชาระบบการสื่อสารข้อมูล

 การสื่อสารข้อมูลได้มีการศึกษาและพัฒนาวิธีการสื่อสารในรูปแบบต่าง ๆ มาอย่างต่อเนื่อง ยาวนานนับตั้งแต่มนุษย์ถ้ำได้คิดค้นวิธีการวาดภาพบนผนังถ้ำเพื่อถ่ายทอดเรื่องราวของเผ่าพันธุ์ตนเอง ชาวอินเดียนแดงในทวีปอเมริกาเหนือได้พัฒนาวิธีการส่งข่าวสารโดยการใช้สัญญาณควันเพื่อเตือนภัยร้ายแรงที่กำลังจะเกิดขึ้นแก่พวกพ้อง แม้วิธีการจะแตกต่างกันออกไปตามเผ่าพันธุ์และระยะเวลา แต่ก็มีสิ่งที่เหมือนกันคือ จะต้องใช้อุปกรณ์หรือวิธีการใด ๆ ทางกายภาพสำหรับส่งข่าวสาร และวิธีการแปลงรูปแบบของข่าวสารให้สามารถส่งผ่านอุปกรณ์ที่เลือกใช้ ได้ให้กลายเป็นกลุ่มควันในลักษณะต่าง ๆ กัน วิธีการต่าง ๆ เหล่านี้ถือว่าเป็นการเริ่มต้นของการสื่อสารข้อมูล

               การสื่อสารอิเล็กทรอนิกส์ในยุคใหม่ทำให้โลก ซึ่งเคยเป็นพื้นที่กว้างใหญ่มหาศาลดูเหมือนว่ามีขนาดเล็กลงเนื่องจากความรวดเร็วในการรับ-ส่งข้อมูล แต่เดิมทีต้องรออ่านข่าวในหนังสือพิมพ์ฉบับวันรุ่งขึ้นเพื่อทราบข่าวการจลาจลที่เกิดขึ้นในวันที่ผ่านมา สมัยนี้สามารถทราบข่าวสารที่เกิดขึ้นทุกหนแห่งในโลกนี้ในทันทีที่ข่าวสารนั้นเกิดขึ้นผ่านทางสื่อโทรทัศน์ โทรสาร หรือจดหมายอิเล็กทรอนิกส์ กลายเป็นความต้องการพื้นฐานในการติดต่อสื่อสารไม่มีผู้ใดจะปฏิเสธได้อีกต่อไป

G.ZeRoGang

คำว่า ZeRoGang (เซโรงัง) มันมีความหมายมากกว่าที่ทุกคนคิด

ในยามสุข...เราจะสุขด้วยกัน

ในยามทุกข์...เราจะทุกข์ด้วยกัน

ในยามเหงา...เราจะอยู่เคียงข้างกัน

ในยามเดือดร้อน...เราจะไม่ทิ้งกัน

และอีกมากมาย เราอยู่กันด้วยความเข้าใจ

ต่อให้เจอกับอุปสรรค เราจะฝ่าไปด้วยกัน

เพราะคำว่า "เพื่อน" เราจะอยู่ด้วยกันตลอดไป

รักพวกเทอ "ZeRoGang "